Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.02.23284121

ABSTRACT

The SARS-CoV-2 is the virus responsible for the COVID-19 pandemic and is plaguing the world since the end of 2019. Different lineages have been discovered ever since and the Gamma lineage, which started the second wave of infections, was first described in Brazil, one of the most affected countries by pandemic. Describing the viral genome and how the virus behaves is essential to contain its propagation and to the development of medications and vaccines. Therefore, this study analyzed SARS-CoV-2 sequenced genomes from Esteio city in Rio Grande do Sul, Southern Brazil. We also comparatively analyzed genomes of the two first years of the pandemic from Rio Grande do Sul state for understanding their genomic and evolutionary patterns. The phylogenomic analysis showed monophyletic groups for Alpha, Gamma, Delta and Omicron, as well as for other circulating lineages in the state. Molecular evolutionary analysis identified several sites under adaptive selection in membrane and nucleocapsid proteins which could be related to a prevalent stabilizing effect on membrane protein structure, as well as majoritarily destabilizing effects on C-terminal nucleocapsid domain.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.30.21265694

ABSTRACT

Background P.1 lineage (Gamma) was first described in the State of Amazonas, northern Brazil, in the end of 2020, and has emerged as a very important variant of concern (VOC) of SARS-CoV-2 worldwide. P.1 has been linked to increased infectivity, higher mortality and immune evasion, leading to reinfections and potentially reduced efficacy of vaccines and neutralizing antibodies. Methods The samples of 276 patients from the State of Amazonas were sent to a central referral laboratory for sequencing by gold standard techniques, through Illumina MiSeq platform. Both global and regional phylogenetic analyses of the successfully sequenced genomes were conducted through maximum likelihood method. Multiple alignments were obtained including previously obtained unique human SARS-CoV-2 sequences. The evolutionary histories of spike and non-structural proteins from ORF1a of northern genomes were described and their molecular evolution was analyzed for detection of positive (FUBAR, FEL, and MEME) and negative (FEL and SLAC) selective pressures. To further evaluate the possible pathways of evolution leading to the emergence of P.1, we performed specific analysis for copy-choice recombination events. A global phylogenomic analysis with subsampled P.1 and B.1.1.28 genomes was applied to evaluate the relationship among samples. Results Forty-four samples from the State of Amazonas were successfully sequenced and confirmed as P.1 (Gamma) lineage. In addition to previously described P.1 characteristic mutations, we find evidence of continuous diversification of SARS-CoV-2, as rare and previously unseen P.1 mutations were detected in spike and non-structural protein from ORF1a. No evidence of recombination was found. Several sites were demonstrated to be under positive and negative selection, with various mutations identified mostly in P.1 lineage. According to the Pango assignment, phylogenomic analyses indicate all samples as belonging to the P.1 lineage. Conclusion P.1 has shown continuous evolution after its emergence. The lack of clear evidence for recombination and the positive selection demonstrated for several sites suggest that this lineage emergence resulted mainly from strong evolutionary forces and progressive accumulation of a favorable signature set of mutations.

4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.16.452571

ABSTRACT

The COVID-19 pandemic caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached by July 2021 almost 200 million cases and more than 4 million deaths worldwide since its beginning in late 2019, leading to enhanced concern in the scientific community and the general population. One of the most important pieces of this host-pathogen interaction is the spike protein, which binds to the human Angiotensin-converting enzyme 2 (hACE2) cell receptor, mediates the membrane fusion and is the major target of neutralizing antibodies against SARS-CoV-2. The multiple amino acid substitutions observed in this region, specially in the Receptor Binding Domain (RBD), mainly after almost one year of its emergence (late 2020), have enhanced the hACE2 binding affinity and led to several modifications in the mechanisms of SARS-CoV-2 pathogenesis, improving the viral fitness and/or promoting immune evasion, with potential impact in the vaccine development. In this way, the present work aimed to evaluate the effect of positively selected mutations fixed in the Brazilian SARS-CoV-2 lineages and to check for mutational evidence of coevolution. Additionally, we evaluated the impact of selected mutations identified in some of the VOC and VOI lineages (C.37, B.1.1.7, P.1, and P.2) of Brazilian samples on the structural stability of the spike protein, as well as their possible association with more aggressive infection profiles by estimating the binding affinity in the RBD-hACE2 complex. We identified 48 sites under selective pressure in Brazilian spike sequences, 17 of them with the strongest evidence by the HyPhy tests, including VOC related mutation sites 138, 142, 222, 262, 484, 681, and 845, among others. The coevolutionary analysis identified a number of 28 coevolving sites that were found not to be conditionally independent, such as the couple E484K - N501Y from P.1 and B.1.351 lineages. Finally, the molecular dynamics and free energy estimates showed the structural stabilizing effect and the higher impact of E484K for the improvement of the binding affinity between the spike RBD and the hACE2 in P.1 and P.2 lineages, as well as the stabilizing and destabilizing effects for the positively selected sites.


Subject(s)
Coronavirus Infections , Mental Disorders , COVID-19
5.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3866539

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is mediated by the androgen-promoted protease, transmembrane protease, serine 2 (TMPRSS2). Previously, we have shown that treatment with proxalutamide, a non-steroidal androgen receptor antagonist, accelerates viral clearance and clinical remission in outpatients with coronavirus disease 2019 (COVID-19) compared to placebo. The effects in hospitalized COVID-19 patients were unknown. Methods: Men and women hospitalized but not requiring mechanical ventilation were randomized (1:1 ratio) to receive 300 mg of proxalutamide per day or placebo for 14 days. The study was conducted at eight sites in the state of Amazonas, Brazil. The primary outcome measure was the clinical status (8-point ordinal scale) at 14-days post-randomization. The primary efficacy endpoint was the 14-day recovery ratio (alive hospital discharge [scores 1, 2]). Findings: A total of 645 patients were randomized (317 received proxalutamide, 328 placebo) and underwent intention-to-treat analysis. The 14-day median ordinal scale score in the proxalutamide group was 1 (interquartile range [IQR]=1–2) versus 7 (IQR=2–8) for placebo, P<0.001. The 14-day recovery rate was 81.4% for proxalutamide and 35.7% for placebo (recovery ratio, 2.28; 95% CI 1.95–2.66 [P<0.001]). The 28-day all-cause mortality rate was 11.0% for proxalutamide versus 49.4% for placebo (hazard ratio, 0.16; 95% CI 0.11–0.24). The median post-randomization time to recovery was 5 days (IQR=3–8) for proxalutamide versus 10 days (IQR=6–15) for placebo.Interpretation: Hospitalized COVID-19 patients not requiring mechanical ventilation receiving proxalutamide had a 128% higher recovery rate than those treated with placebo. Clinical Trial Registration Details: ClinicalTrials.gov number, NCT04728802Funding Information: Kintor Pharmaceuticals, Ltd.Declaration of Interests: Kintor Pharmaceuticals, Ltd. manufactures and plans to market proxalutamide, and has an investigational new drug (IND) application under United States Food and Drugs Administration to conduct a Phase 3 study for proxalutamide for COVID19. Applied Biology, Inc. has patents pending regarding antiandrogen therapy for COVID19. Dr. Goren, Dr. McCoy, and Dr. Li are employees of Applied Biology, Inc. Dr. Cadegiani has served as a clinical director for Applied Biology, Inc. Dr. Wambier has served as an advisor to Applied Biology, Inc. The other authors have no conflict of interest to declare.Ethics Approval Statement: The study was approved by an ethics committee and registered in clinicaltrials.gov (NCT04728802), and also approved by Brazilian National Ethics Committee, approval number 4.513.425; CAAE 41909121.0.0000.5553; Comitê de Ética em Pesquisa (CEP) of the Comitê Nacional de Ética em Pesquisa (CONEP) of the Ministry of Health (MS). (CEP/CONEP/MS).


Subject(s)
Alzheimer Disease , Porphyria, Erythropoietic , Severe Acute Respiratory Syndrome , Multiple Sclerosis , COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.18.21257420

ABSTRACT

Almost a year after the COVID-19 pandemic had begun, The United Kingdom, South Africa, and Brazil became the epicenter of new lineages, the Variant of Concern (VOCs), B.1.1.7, B.1.351, and P.1, respectively. These VOCs are increasingly associated with enhanced transmissibility, immunity evasion, and mortality. The previous most prevalent lineages in the state of Rio Grande do South (Brazil), B.1.1.28 and B.1.1.33 were rapidly replaced by P.1 and P.2, two B.1.1.28-derived lineages harboring the E484K mutation. To perform a genomic characterization of SARS-CoV-2 samples from COVID-19 patients from the metropolitan region of Porto Alegre (Rio Grande do Sul, Southern Brazil), in this second pandemic wave, we sequenced viral samples from patients of this region to: (i) identify the prevalence of SARS-CoV-2 lineages in the region, the state and bordering countries/states, (ii) characterize the mutation spectra, and (iii) hypothesize possible viral dispersal routes by using phylogenetic and phylogeographic approaches. As results, we not only confirmed that 96.4% of the samples belonged to the P.1 lineage but also that approximately 20% of which could be assigned as the newer P.1.2 (a P.1 derived new sublineage harboring new signature substitutions recently described and present in other Brazilian states and foreign countries). Moreover, P.1 sequences from this study were allocated in several distinct branches (four clades and five clusters) of the P.1 phylogeny, suggesting multiple introductions of P.1 in Rio Grande do Sul still in 2020 and placing this state as a potential core of diffusion and emergence of P.1-derived clades. It is still uncertain if the emergence of P.1.2 and other P.1 clades are related to further virological, clinical, or epidemiological consequences. However, the clear signs of viral molecular diversification from recently introduced P.1 warrant further genomic surveillance.


Subject(s)
COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.08.21253152

ABSTRACT

The COVID-19 pandemic has already reached approximately 110 million people and it is associated with 2.5 million deaths worldwide. Brazil is the third worst-hit country, with approximately 10.2 million cases and 250 thousand deaths. International efforts have been established to share information about SARS-CoV-2 epidemiology and evolution. However, sequencing facilities and research investments are very heterogeneous across different regions and countries. The understanding of the SARS-CoV-2 evolution plays a significant role in the development of effective strategies for public health and disease management. We aimed to analyze the available and high-quality genome sequences from Brazil between February 2020 and February 2021 to identify mutation hotspots, geographical and temporal distribution of SARS-CoV-2 lineages by using phylogenetics and phylodynamics analyses. We describe heterogeneous and episodic sequencing efforts, the progression of the different lineages along time, evaluating mutational spectra and frequency oscillations derived from the prevalence of novel and specific lineages across different Brazilian regions. We found at least seven major (1-7) and two minor clades (4.2 and 5.3) related to the six most prevalent lineages in the country and described its spatial distribution and dynamics. The emergence and recent frequency shift of lineages (P.1 and P.2) containing mutations of concern in the spike protein ( e. g ., E484K, N501Y) draws attention due to their association with immune evasion and enhanced receptor binding affinity. Improvements in genomic surveillance are of paramount importance and should be extended in Brazil to better inform policy makers and enable evidence-based decisions to fight the COVID-19 pandemic.


Subject(s)
COVID-19
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.27.426895

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has affected millions of people since its beginning in 2019. The propagation of new lineages and the discovery of key mechanisms adopted by the virus to overlap the immune system are central topics for the entire public health policies, research and disease management. Since the second semester of 2020, the mutation E484K has been progressively found in the Brazilian territory, composing different lineages over time. It brought multiple concerns related to the risk of reinfection and the effectiveness of new preventive and treatment strategies due to the possibility of escaping from neutralizing antibodies. To better characterize the current scenario we performed genomic and phylogenetic analyses of the E484K mutated genomes sequenced from Brazilian samples in 2020. From October, 2020, more than 40% of the sequenced genomes present the E484K mutation, which was identified in three different lineages (P1, P2 and B.1.1.33) in four Brazilian regions. We also evaluated the presence of E484K associated mutations and identified selective pressures acting on the spike protein, leading us to some insights about adaptive and purifying selection driving the virus evolution.


Subject(s)
COVID-19
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.21.21249906

ABSTRACT

Brazil is the third country most affected by Covid-19 pandemic. In spite of this, viral evolution in municipality resolution is poorly understood in Brazil and it is crucial to understand the epidemiology of viral spread. We identified four main circulating lineages in Esteio (Southern Brazil) and their relationship with global, national and regional lineages using phylogenetics and phylodynamics inferences from 21 SARS-CoV-2 genome sequences. We provided a comprehensive view of viral mutations from a time- and age-representative sampling from May to October 2020, in Esteio (RS, Brazil), highlighting two frequent mutations in Spike glycoprotein (D614G and V1176F), an emergent mutation (E484K) in Spike Receptor Binding Domain (RBD) characteristic of the South African lineage B.1.351, and the adjacent replacement of 2 amino acids in Nucleocapsid phosphoprotein (R203K and G204R). A significant viral diversity was evidenced with the identification of 80 different SNPs. The E484K replacement was found in two genomes (9.5%) from samples obtained in mid-October, which is to our best knowledge the earliest description of E484K harboring SARS-CoV-2 in South Brazil. This mutation identified in a small municipality from the RS state demonstrates that it was probably widely distributed in the Brazilian territory, but went unnoticed so far by the lack of genomic surveillance in Brazil. The introduction of E484K mutants shows temporal correlation with later increases in new cases in our state. Importantly, since it has been associated with immune evasion and enhanced interaction with hACE-2, lineages containing this substitution must be the subject of intense surveillance. Our date demonstrates multiple introductions of the most prevalent lineages (B.1.1.33 and B.1.1.248) and the major role of community transmission in viral spreading and the establishment of Brazilian lineages. This represents an important contribution to the epidemiology of SARS-CoV-2.


Subject(s)
COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.22.328864

ABSTRACT

COVID-19 has had an unprecedented global impact in health and economy affecting millions of persons world-wide. To support and enable a collaborative response from the global research communities, we created a data collection for different public sources for anonymized patient clinical data, imaging datasets, molecular data as nucleotide and protein sequences for the SARS-CoV-2 virus, reports of count of cases and deaths per city/country, and other economic indicators in Databiology Lab (https://www.lab.databiology.net/) where researchers could access these data assets and use the hundreds of available open source bioinformatic applications to analyze them. These data assets are regularly updated and was used in a successful virtual 3-day hackathon organized by Databiology Ltd and Mindstream-AI where hundreds of attendees to work collaboratively to analyze these data collections.


Subject(s)
COVID-19
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.22.349522

ABSTRACT

SARS-CoV-2 ORF3a is believed to form ion channels, which may be involved in the modulation of virus release, and has been implicated in various cellular processes like the up-regulation of fibrinogen expression in lung epithelial cells, downregulation of type 1 interferon receptor, caspase-dependent apoptosis, and increasing IFNAR1 ubiquitination. ORF3a assemblies as homotetramers, which are stabilized by residue C133. A recent cryoEM structure of a homodimeric complex of ORF3a has been released. A lower-resolution cryoEM map of the tetramer suggests two dimers form it, arranged side by side. The dimer's cryoEM structure revealed that each protomer contains three transmembrane helices arranged in a clockwise configuration forming a six helices transmembrane domain. This domain's potential permeation pathway has six constrictions narrowing to about 0.1 nm in radius, suggesting the structure solved is in a closed or inactivated state. At the cytosol end, the permeation pathway encounters a large and polar cavity formed by multiple beta strands from both protomers, which opens to the cytosolic milieu. We modeled the tetramer following the arrangement suggested by the low-resolution tetramer cryoEM map. Molecular dynamics simulations of the tetramer embedded in a membrane and solvated with 0.5 M of KCl were performed. Our simulations show the cytosolic cavity is quickly populated by both K+ and Cl-, yet with different dynamics. K+ ions moved relatively free inside the cavity without forming proper coordination sites. In contrast, Cl- ions enter the cavity, and three of them can become stably coordinated near the intracellular entrance of the potential permeation pathway by an inter-subunit network of positively charged amino acids. Consequently, the central cavity's electrostatic potential changed from being entirely positive at the beginning of the simulation to more electronegative at the end.

12.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.20.20216259

ABSTRACT

Population-based prevalence surveys of COVID-19 contribute to establish the burden and epidemiology of infection, the role of asymptomatic and mild infections in transmission, and allow more precise decisions about reopen policies. We performed a systematic review to evaluate qualitative aspects of these studies, their reliability, and biases. The available data described 37 surveys from 19 countries, mostly from Europe and America and using antibody testing. They reached highly heterogeneous sample sizes and prevalence estimates. Disproportional prevalence was observed in minority communities. Important risk of bias was detected in four domains: sample size, data analysis with sufficient coverage, measurements in standard way, and response rate. The correspondence analysis showed few consistent patterns for high risk of bias. Intermediate risk of bias was related to American and European studies, blood samples and prevalence >1%. Low risk of bias was related to Asian studies, RT-PCR tests and prevalence <1%.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL